
Squirls Documentation
Release v2.0.0

Daniel Danis, Peter N Robinson

Mar 30, 2022

CONTENTS:

1 Set up Squirls 3
1.1 Squirls downloadable resources . 3
1.2 Build Squirls from source . 4

2 Run Squirls 5
2.1 annotate-pos - Annotate variant positions . 6
2.2 annotate-csv - Annotate variant positions stored in a CSV file . 6
2.3 annotate-vcf - Annotate variants in a VCF file . 7
2.4 precalculate - Precalculate SQUIRLS scores . 8

3 Output formats 11
3.1 HTML output format . 11
3.2 VCF output format . 11
3.3 CSV/TSV output format . 12

4 Result interpretation 13
4.1 Variant categories . 14
4.2 Figure types . 16

5 Squirls anatomy 19
5.1 Splice features . 19
5.2 Random forest estimators . 20
5.3 Logistic regression . 20
5.4 Glossary . 21

6 Use Squirls as a library 23
6.1 Install Squirls modules into your local Maven repository . 23
6.2 Bootstrap Squirls . 23
6.3 Spring Boot application . 24

Index 27

i

ii

Squirls Documentation, Release v2.0.0

Super-quick Information Content and Random Forest Learning for Splice Variants.

This application performs prediction of deleteriousness of genomic variants with respect to mRNA splicing.

CONTENTS: 1

Squirls Documentation, Release v2.0.0

2 CONTENTS:

CHAPTER

ONE

SET UP SQUIRLS

Squirls is a desktop Java application that requires several external files to run. This document explains how to download
these files and prepare to run Squirls.

Note: Squirls is written with Java version 11 and will run and compile under Java 11+.

1.1 Squirls downloadable resources

There are several external files that must be downloaded prior running Squirls.

1.1.1 Prebuilt Squirls executable

To download the prebuilt Squirls JAR file, go to the Releases section on the Squirls GitHub page and download the
latest precompiled version of Squirls.

1.1.2 Squirls database files

Squirls database files are available for download from the following locations:

Ver-
sion

Genome
build

URL Size

2103 hg19/GRCh37 https://storage.googleapis.com/squirls/2103_
hg19.zip

~10.5 GB for download, ~15 GB un-
packed

2103 hg38/GRCh38 https://storage.googleapis.com/squirls/2103_
hg38.zip

~11.1 GB for download, ~16.5 GB un-
packed

2203 hg19/GRCh37 https://storage.googleapis.com/squirls/2203_
hg19.zip

~9.5 GB for download, ~11.9 GB un-
packed

2203 hg38/GRCh38 https://storage.googleapis.com/squirls/2203_
hg38.zip

~9.9 GB for download, ~12.2 GB un-
packed

Note: The 2103 works with Squirls v1.0.0, the 2203 works with Squirls v2.0.0.

Use curl or wget utilities to download the files from command line:

3

https://github.com/TheJacksonLaboratory/Squirls/releases
https://storage.googleapis.com/squirls/2103_hg19.zip
https://storage.googleapis.com/squirls/2103_hg19.zip
https://storage.googleapis.com/squirls/2103_hg38.zip
https://storage.googleapis.com/squirls/2103_hg38.zip
https://storage.googleapis.com/squirls/2203_hg19.zip
https://storage.googleapis.com/squirls/2203_hg19.zip
https://storage.googleapis.com/squirls/2203_hg38.zip
https://storage.googleapis.com/squirls/2203_hg38.zip

Squirls Documentation, Release v2.0.0

$ wget https://storage.googleapis.com/squirls/2203_hg38.zip
or
$ curl --output 2203_hg38.zip https://storage.googleapis.com/squirls/2203_hg38.zip

Alternatively, use a GUI FTP client such as FileZilla.

After the download, unzip the archive(s) content into a folder and note the folder path.

1.2 Build Squirls from source

As an alternative to using prebuilt Squirls JAR file, the Squirls JAR file can also be built from Java sources.

Run the following commands to download Squirls source code from GitHub repository and to build Squirls JAR file:

$ git clone https://github.com/TheJacksonLaboratory/Squirls
$ cd Squirls
$./mvnw package

Note: To build Squirls from sources, JDK 11 or better must be available in the environment

After the successful build, the JAR file is located at squirls-cli/target/squirls-cli-2.0.0.jar.

To verify that the building process went well, run:

$ java -jar squirls-cli/target/squirls-cli-2.0.0.jar --help

4 Chapter 1. Set up Squirls

https://filezilla-project.org/

CHAPTER

TWO

RUN SQUIRLS

Squirls is a command-line Java tool that runs with Java version 11 or higher.

Before using Squirls, you must setup Squirls as describe in the Set up Squirls section.

Squirls provides four commands to annotate variants in different input formats:

• annotate-pos - quickly annotate a couple of variants, e.g. chr9:136224694A>T

• annotate-csv - annotate variants stored in a CSV file

• annotate-vcf - annotate variants in VCF file

• precalculate - precalculate SQUIRLS scores for provided regions and store the results in a compressed VCF
file

In the examples below, we assume that $SQUIRLS_DATA points to Squirls resource directory obtained by unzipping the
archive, as described in the Set up Squirls section:

e.g.
SQUIRLS_DATA=path/to/squirls/data

where:

path/to/squirls/data
assembly_report.txt
genome.fa
genome.fa.dict
genome.fa.fai
phylop.bw
squirls.mv.db
tx.ensembl.ser
tx.refseq.ser
tx.ucsc.ser

5

Squirls Documentation, Release v2.0.0

2.1 annotate-pos - Annotate variant positions

The easiest way to quickly calculate Squirls scores for a couple of variants is to use the annotate-pos command:

java -jar squirls-cli.jar annotate-pos -d $SQUIRLS_DATA "chr9:136224694A>T"
→˓"chr3:52676065CA>C"

Note: Do not forget to surround the variants with double quotes ("chr9:136224694A>T" and not
chr9:136224694A>T) to prevent interpretation of the > as a shell operator.

Note: Both "chr1:12345A>T" and "chr1:g.12345A>T" notations are supported.

The command above generates the following terminal output:

...
2000-01-01 12:34:56.309 INFO 12345 --- [main] o.m.s.c.c.a.AnnotatePosCommand␣
→˓ : Analyzing 2 change(s): `chr9:136224694A>T, chr3:52676065CA>C`

chr9:136224694A>T pathogenic 0.970 NM_001278928.1=0.970115;NM_017503.4=0.970115
chr3:52676065CA>C neutral 0.007 NM_018313.4=0.006350;XM_005265275.1=0.006350;
→˓XM_005265276.1=0.006350;XM_005265277.1=0.006350;XM_005265278.1=0.006350;XM_005265279.
→˓1=0.006350;XM_005265280.1=0.006350;XM_005265281.1=0.006350;XM_005265282.1=0.006350;XM_
→˓005265283.1=0.006350;XM_005265284.1=0.006350;XM_005265285.1=0.006350;XM_005265286.1=0.
→˓006350;XM_005265287.1=0.006350;XM_005265288.1=0.006350;XM_005265289.1=0.006350;XM_
→˓005265290.1=0.006350;XM_005265291.1=0.006350;XM_005265292.1=0.006350

Squirls reports scores in four columns:

• variant position

• variant interpretation, either pathogenic or neutral

• maximum Squirls pathogenicity prediction rounded up to 3 significant digits

• Squirls pathogenicity predictions calculated for each transcript the variant overlaps with

2.2 annotate-csv - Annotate variant positions stored in a CSV file

To annotate more than just a few variant positions, it may be more convenient to use the annotate-csv command.

Let’s run the annotate-csv command to annotate four variants stored in the example.csv file (an example CSV file
with 4 variants stored in Squirls repository):

java -jar squirls-cli.jar annotate-csv -d $SQUIRLS_DATA example.csv path/to/output/file

Squirls reads the variants and stores the scores into path/to/output/file.html file. The HTML is the default output
format, see Output formats section for more details.

6 Chapter 2. Run Squirls

https://github.com/TheJacksonLaboratory/Squirls/blob/development/squirls-cli/src/examples/example.csv

Squirls Documentation, Release v2.0.0

2.2.1 Mandatory arguments

The annotate-csv command requires three mandatory arguments:

• -d | --data-directory - path to Squirls data directory

• path to CSV file with variants

• output prefix for the generated files

2.2.2 Optional arguments

In addition to the mandatory arguments, Squirls allows to fine tune the annotation using optional arguments:

• --all-transcripts - report Squirls scores for all overlapping transcripts. Default: false

• --compress - compress the output files using gzip (tabular) or bgzip (VCF). The option has no effect on
HTML output format. Default: false

• -f | --output-format - comma separated list of Output formats. Use html,vcf,csv,tsv to store results
in all output formats. Default: html

• -n, --n-variants-to-report - number of most pathogenic variants to include in HTML report. The option
has no effect on VCF output format. Default: 100

• --report-features - include Squirls features into the output. Default: false

• -t | --transcript-source - transcript source to use. Choose one of {REFSEQ, ENSEMBL, UCSC}. De-
fault: REFSEQ

• --threads - process variants on n threads. Default: 2

2.3 annotate-vcf - Annotate variants in a VCF file

The aim of this command is to annotate variants in a VCF file and to store the results in one or more Output formats.

To annotate variants in the example.vcf file (an example VCF file with 6 variants stored in Squirls repository), run:

$ java -jar squirls-cli.jar annotate-vcf -d $SQUIRLS_DATA example.vcf path/to/output/file

After the annotation, the results are stored at path/to/output/file.html.

2.3.1 Mandatory arguments

The annotate-vcf command requires three mandatory arguments:

• -d | --data-directory - path to Squirls data directory

• path to the VCF file with variants

• output prefix for the generated files

2.3. annotate-vcf - Annotate variants in a VCF file 7

https://github.com/TheJacksonLaboratory/Squirls/blob/development/squirls-cli/src/examples/example.vcf

Squirls Documentation, Release v2.0.0

2.3.2 Optional arguments

In addition to the mandatory arguments, Squirls allows to fine tune the annotation using optional arguments:

• --all-transcripts - report Squirls scores for all overlapping transcripts. Default: false

• --compress - compress the output files using gzip (tabular) or bgzip (VCF). The option has no effect on
HTML output format. Default: false

• -f | --output-format - comma separated list of Output formats. Use html,vcf,csv,tsv to store results
in all output formats. Default: html

• -n, --n-variants-to-report - number of most pathogenic variants to include in HTML report. The option
has no effect on VCF output format. Default: 100

• --report-features - include Squirls features into the output. Default: false

• -t | --transcript-source - transcript source to use. Choose one of {REFSEQ, ENSEMBL, UCSC}. De-
fault: REFSEQ

• --threads - process variants on n threads. Default: 2

2.4 precalculate - Precalculate SQUIRLS scores

We do not provide a tabular file with precalculated scores for all possible genomic variants. Instead, we provide a
command for precalculating the scores for your genomic regions of interest. This command precalculates Squirls
scores for all possible variants (including INDELs up to specified length) and stores the scores in a compressed VCF
file.

Example:

$ java -jar squirls-cli.jar precalculate -d $SQUIRLS_DATA CM000669.1:44187000-44187600␣
→˓CM000669.1:44186000-44186500

The command computes scores for two regions, each region encompassing an exons of the GCK gene plus some
neighboring intronic sequence. SQUIRLS recognizes GenBank, RefSeq, UCSC, and simple (1, 2, . . . , X, Y, MT) contigs
accessions.

The region coordinates must be provided using zero-based coordinates where the start position is not part of the region.

By default, SQUIRLS generates all possible SNVs for the bases of the region, including deletion of the base. For
example, a region 𝑟 spanning ctg1:3-5 of a 10bp-long reference contig ctg1:

>ctg1
ACGTACGTAC

yields the variants:

chrom pos SNVs DELs INSs
ctg1 4 T>A, T>C, T>G T> N/A
ctg1 5 A>C, A>G, A>T A> N/A

the annotated variants are stored in a compressed VCF file named squirls-scores.vcf.gz that is by default stored
in the current working directory.

Please note that the VCF file not sorted. Please sort and index the VCF file yourself, e.g. by running:

8 Chapter 2. Run Squirls

Squirls Documentation, Release v2.0.0

bcftools sort squirls-scores.vcf.gz | bgzip -c > squirls-scores.sorted.vcf.gz
tabix squirls-scores.sorted.vcf.gz

2.4.1 Mandatory arguments

The only mandatory argument for precalculate is -d to provide path to Squirls data directory. Following that, 0..n
region definitions, e.g. CM000669.1:44187000-44187600, CM000669.1:44186000-44186500 can be provided.

2.4.2 Optional arguments

There are several options to adjust:

• -i | --input - path to a BED file with the target regions. Lines starting with # are ignored. See example
regions.bed

• --individual - if the flag is present, predictions with respect to all overlapping transcripts will be stored within
the INFO field.

• -l | --max-length - maximum length of the generated variants on the reference genome, see Variant gener-
ation below (Default: 1)

• -o | --output - path to VCF file where to write the results. The VCF output is compressed, so we recommend
to use *.vcf.gz suffix. (Default: squirls.scores.vcf.gz)

• -t | --transcript-source - transcript source to use. Choose one of {REFSEQ, ENSEMBL, UCSC}. De-
fault: REFSEQ

• --threads - number of threads to use for calculating the scores. (Default: 2)

2.4.3 Parallel processing

When predicting the scores, each region is handled by a single thread, while at most --threads threads being used
for prediction at the same time. Therefore, to fully leverage the parallelism offered by modern multi-core CPUs, we
recommend to split large regions into several smaller ones.

2.4.4 Variant generation

The default value of the -l, --max-length parameter is set to 1. As explained above, the parameter controls the
length of the generated variants. However, length can be set to any positive integer, leading to calculation of scores for
variants of different lengths.

Using the region 𝑟 and the contig ctg1 defined above, setting -l to 2 will calculate scores for variants:

Table 1: The variant generation pattern
chrom pos SNVs DELs INSs
ctg1 4 T>A, T>C, T>G T>, TA>T T>TA, T>TC, T>TG, T>TT
ctg1 5 A>C, A>G, A>T A> A>AA, A>AC, A>AG, A>AT

Note: The number of possible variants grows exponentially with increasing of the --length value. This can lead to
substantial run times and to extending your computational budget. Use at your own risk ;)

2.4. precalculate - Precalculate SQUIRLS scores 9

https://github.com/TheJacksonLaboratory/Squirls/blob/development/squirls-cli/src/examples/regions.bed

Squirls Documentation, Release v2.0.0

10 Chapter 2. Run Squirls

CHAPTER

THREE

OUTPUT FORMATS

Squirls supports storing results in 4 output formats: HTML, VCF CSV, and TSV. Use the -f | --output-format
option to select one or more of the desired output formats (e.g. -f html,vcf). HTML report is generated by default.

3.1 HTML output format

Squirls creates an HTML file with the analysis summary and with variants sorted by Squirls score in descending order.
The number of the reported variants is adjusted by the -n | --n-variants-to-report option. See the Result
interpretation section to learn more about the content of the HTML report.

3.2 VCF output format

When including vcf into the -f option, a VCF file with all input variants is created. The annotation process adds a
novel FILTER and INFO field(s) to each variant that overlaps with one or more transcript region:

• SQUIRLS - a FILTER flag indicating that the variant is considered to have a deleterious effect on >=1 overlapping
transcript

• SQUIRLS_SCORE - an INFO string containing maximum SQUIRLS scores for the overlapping transcripts.

• SQUIRLS_TXS - an INFO string containing SQUIRLS scores for each variant-transcript combination. The field
is present when --all-transcripts option is specified.

For the example variant chr1:1234C>A,G, the INFO field will contain the following:

SQUIRLS_SCORE=0.988654;SQUIRLS_TXS=A|NM_123456.1=0.988654|ENST00000987654.1=0.988654
SQUIRLS_SCORE=0.330112;SQUIRLS_TXS=G|NM_12356.1=0.330112|ENST00000987654.1=0.330112

Multi-allelic variants are broken down into separate records and processed individually. Predictions with respect to the
overlapping transcripts are separated by a pipe (|) symbol.

Note: The -n option has no effect for the VCF output format.

Note: The vcfgz output format has been deprecated. Use --compress and -f vcf options to get results as a
compressed VCF file.

11

Squirls Documentation, Release v2.0.0

3.3 CSV/TSV output format

To write n most deleterious variants into a CSV (or TSV) file, use csv (tsv) in the -f option.

The results are written into a tabular file with the following columns:

Table 1: Tabular output
chrom pos ref alt gene_symbol tx_accession interpretation squirls_score
chr3 165504107 A C BCHE NM_000055.2 pathogenic 0.99997203304
. .

Note: Use --report-features and/or --all-transcripts options to add columns with Squirls features and/or
Squirls scores for all overlapping transcripts.

12 Chapter 3. Output formats

CHAPTER

FOUR

RESULT INTERPRETATION

When designing Squirls, our motivation was to create an interpretable algorithm for identification of splice deleterious
variants. We addressed this goal by limiting ourselves to use a small set of biologically interpretable attributes for
learning how to separate splice deleterious variants from neutral polymorphisms.

To help with interpretation of a variants that has been marked as splicing deleterious, we developed HTML result
format that presents all available information in a visually attractive way. When reporting variants, we sort the variants
by Squirls score in descending order - the most deleterious variants are placed on the top of the list.

The following picture shows an example output for variant NM_000251.2:c.1915C>T (chr2:47702319C>T), predicted
to create a novel cryptic donor site (click for a full size image):

Squirls summarizes the information available for the variant in a box. The header of the box contains three fields:

13

Squirls Documentation, Release v2.0.0

• Variant coordinates: Summary of variant’s location on used genomic assembly, e.g. chr2:47,702,319 C>T

• HGVS gene symbol: e.g. MSH2

• Squirls score: maximum predicted splicing pathogenicity score, e.g. 0.698

The box content consists of three sections:

• Variant effects on overlapping transcripts: Squirls uses Jannovar to predict effect of the variant on the tran-
script, and represents the effect using HGVS Sequence Variant Nomenclature. Then, the effects and Squirls
scores calculated for the overlapping transcripts are listed in a table. The transcript accessions corresponding to
the maximum Squirls score are emphasized by blue color (all 4 rows in the above example).

• Splicing features: Squirls shows splicing feature values in a table, see Splice features section for explanations.

• Figures: Squirls presents SVG graphics that show the most important predicted effects.

4.1 Variant categories

When generating the HTML report, Squirls makes a decision about which set of figures to make for a given variant.
Based on the most likely splice altering-pathomechanism, the variant is assigned into one of four categories that dictate
which figures will be generated:

4.1.1 Canonical donor

Squirls creates a Sequence trekker for variants that are likely to disrupt a canonical donor site and to lead to either exon
skipping or to utilization of a weaker cryptic site located nearby. In addition, Squirls plots the position of ∆𝑅𝑖 canonical
donor in the distribution of random changes to sequences of the same length (see \Delta R_i score distribution).

Sequence trekker summarizes the sequence context and the impact of the variant on the binding site. Let’s consider a
A>T variant located at position 4 with respect to exon/intron border. The ref allele represented by normal a character
is substituted by t. The change location is highlighted by a black box. The unfavourable contact between spliceosome
and the alt allele is represented by drawing the red bar corresponding to t upside down, and by drawing box for the a
of the ref allele upwards:

The distribution of random changes shows position of ∆𝑅𝑖 canonical donor of the particular variant in the distribution
of random changes to sequence of the same length. When ∆𝑅𝑖 score is positive and close to the distribution edge, then
the variant reduces the sequence information and the resulting allele is less likely to be recognized as a donor site.

4.1.2 Cryptic donor

For a variant predicted to create a cryptic donor site, we generate Sequence trekkers to compare the candidate site to
the closest canonical donor site.

Let’s consider the case of a missense variant chr2:47,702,319C>T (NM_000251.2: c.1915C>T) reported by Liu et
al., 1994 (Table 2, Kindred JV). The variant is located 91 bases upstream of the canonical donor site and introduces a
cryptic donor site into coding sequence of the MSH2 gene.

Squirls generates a Sequence trekker for the Canonical donor site, the site features 𝑅𝑖 = 6.10 bits:

The candidate cryptic donor site consists of the following alleles, where (again) the change C>T is located 91 bases
upstream of the canonical donor site:

14 Chapter 4. Result interpretation

https://varnomen.hgvs.org
https://pubmed.ncbi.nlm.nih.gov/8062247
https://pubmed.ncbi.nlm.nih.gov/8062247

Squirls Documentation, Release v2.0.0

• CAGGCATGC (ref)

• CAGGTATGC (alt)

Squirls represents alleles of the Predicted cryptic donor site by the following sequence trekker:

The T base introduced by the variant increases 𝑅𝑖 of the site by 2.49 bits to 𝑅𝑖 𝑎𝑙𝑡 = 8.59 bits. The increase is
graphically represented by drawing an upside-down blue box for c (an unfavorable contact), and upwards pointing box
for t to represent a favourable interaction between the alt allele and the spliceosome.

4.1.3 Canonical acceptor

For a variant that is likely to disrupt a canonical acceptor site, we create Sequence trekker, and we plot position of
∆𝑅𝑖 canonical acceptor in the distribution of random changes to sequence of the same length (see \Delta R_i score
distribution).

Sequence trekker shows relative importance of the individual positions of the acceptor site and the impact of the variant
on the site.

We also show position of ∆𝑅𝑖 canonical acceptor in the distribution of random changes to sequence of the same length.
Here, the ∆𝑅𝑖 score will be positive if the variant reduces the sequence information and if the variant is likely to reduce
recognition of the acceptor site.

Additionally, the variants that introduce (Y)AG sequence into the AG-exclusion zone might lead to exon skipping or
to cryptic splicing (see Wimmer et al., 2020). The info regarding violation of the AG-exclusion zone is located in the
splice features table.

4.1.4 Cryptic acceptor

For the variant that leads to creation of a cryptic acceptor site, Squirls generates the same graphics as for the cryptic
donor sites - two Sequence trekkers to compare the candidate cryptic acceptor site to the closest canonical acceptor
site.

Let’s consider the case of the variant chr1:16,451,824C>T (NM_004431.3: c.2826-9G>A) located 9 bases upstream
of the canonical acceptor site that introduces a cryptic acceptor site into the EPHA2 gene (Zhang et al., 2009).

The first sequence walker represents the Canonical acceptor site, located 9 bp downstream of the variant site:

The alt allele of the canonical site has 𝑅𝑖 = 7.26 bits.

Then, the Predicted cryptic acceptor site consists of these alleles:

• ctaactctccctctctccctcccggCC (ref)

• ctaactctccctctctccctcccagCC (alt)

The corresponding sequence trekker is:

The cryptic acceptor site features 𝑅𝑖 = 11.98 bits. Sequence trekker depicts the change by drawing the orange box for
g upside down (an unfavorable contact), and by drawing the green box for a upwards (a favourable interaction). The
changed position is emphasized by a black box on the sequence ruler.

Note: Please note that Squirls uses the alt allele to generate sequences necessary to draw sequence trekkers for both
canonical site and cryptic site. This is because we are interested in comparing the sites and not the individual alleles.

4.1. Variant categories 15

https://pubmed.ncbi.nlm.nih.gov/32126153
https://pubmed.ncbi.nlm.nih.gov/19306328

Squirls Documentation, Release v2.0.0

4.2 Figure types

This section provides detailed explanations of the figures we generate for the variants, as described in the previous
section. We consider these figures to be the most helpful for clinical interpretation of the splice variants.

4.2.1 Sequence ruler

Sequence rulers are SVG graphics that show the sequence of the donor or acceptor site, mark the intron-exon bound-
ary (red vertical bar), and show the position of any alternate bases that diverge from the reference sequence (black
rectangle).

Note: We intentionally omit the position zero in sequence rulers, to make the result interpretation easier for biologists,
who are more comfortable with numbering of intronic/exonic bases that starts at one.

However, please note that the correct numbering scheme starts at zero. Please visit website of professor Tom Schneider,
where among Pitfalls in Information Theory he also explains the correct numbering scheme for sequences.

4.2.2 Sequence logo

In 1990, Tom Schneider introduced Sequence logos as a way of graphically displaying consensus sequences. The
characters representing the sequence are stacked on top of each other for each position in the aligned sequences. The
height of each letter is made proportional to its frequency, and the letters are sorted so the most common one is on top.
The height of the entire stack is then adjusted to signify the information content of the sequences at that position. From
these sequence logos, one can determine not only the consensus sequence but also the relative frequency of bases and
the information content (measured in bits) at every position in a site or sequence. The logo displays both significant
residues and subtle sequence patterns (Nucleic Acids Res 1990;18:6097-100).

4.2.3 Sequence walker

Tom Schneider introduced Sequence walkers in 1995 as a way of graphically displaying how binding proteins and
other macromolecules interact with individual bases of nucleotide sequences. Characters representing the sequence
are either oriented normally and placed above a line indicating favorable contact, or upside-down and placed below
the line indicating unfavorable contact. The positive or negative height of each letter shows the contribution of that
base to the average sequence conservation of the binding site, as represented by a sequence logo (Nucleic Acids Res
1997;25:4408-15).

In 1998, Peter Rogan introduced the application of individual information content and Sequence walkers to splicing
variants (Hum Mutat 1998;12:153-71).

Note: Squirls does not generate Sequence walker graphics for sequences. Instead, Squirls uses Sequence trekker, a
graphics based on Sequence walker that is explained in the next section.

16 Chapter 4. Result interpretation

http://users.fred.net/tds/lab/pitfalls.html#ignoring_zero
https://pubmed.ncbi.nlm.nih.gov/2172928
https://pubmed.ncbi.nlm.nih.gov/9336476
https://pubmed.ncbi.nlm.nih.gov/9336476
https://pubmed.ncbi.nlm.nih.gov/9711873

Squirls Documentation, Release v2.0.0

4.2.4 Sequence trekker

Squirls combines the sequence ruler, sequence logo, and sequence walker into a new figure that we call Sequence
trekker (because a trek goes further than a walk).

On top of that, sequence trekker integrates the information regarding the reference and the alternate alleles into a single
graphics.

Sequence trekker replaces the letters used in Sequence walker by bars. The bars are colored using the standard “Sanger”
color conventions. Similarly to Sequence walker, the bar orientation indicates favorable (up) or unfavorable (down)
contacts. The bar height shows the contribution of that base to the average sequence contribution of the binding site.
To present data for reference and alternate alleles in the same time, the bar corresponding to the reference allele at the
variant position is drawn with a semi-transparent fill.

In many disease-associated variants, the bar corresponding to the reference base will be positioned upright and the
alternate base will be facing down.

4.2.5 Δ𝑅𝑖 score distribution

The individual sequence information of a sequence 𝑅𝑖 𝑟𝑒𝑓 and an alternate sequence 𝑅𝑖 𝑎𝑙𝑡 are presented using the
Sequence trekker. This graphic shows the value of the difference between the reference sequence and an alternate
sequence as well as the distribution of random changes to sequences of the same length. A variant that reduces the
sequence information is associated with a positive ∆𝑅𝑖 score (∆𝑅𝑖 = 8.96 bits in this case).

4.2. Figure types 17

Squirls Documentation, Release v2.0.0

18 Chapter 4. Result interpretation

CHAPTER

FIVE

SQUIRLS ANATOMY

This document outlines the anatomy of the Squirls model, specifically, how a Squirls score is calculated for a variant.

As outlined in the Squirls manuscript, Squirls consists of two random forest estimators (one for the donor and the other
for the acceptor site) followed by a logistic regression. Both random forests calculate predictions for a single variant,
the predictions are subsequently transformed by the logistic regression into the final Squirls score. For a single variant,
Squirls calculates scores for all overlapping transcripts.

5.1 Splice features

The first step of the prediction process is the calculation of a small set of interpretable numeric features for machine
learning. The features are then passed to random forest estimators. The random forests use different feature subsets to
perform the prediction.

5.1.1 Donor site-specific estimator

This section lists the features used by the donor random forest estimator:

𝑅𝑖 wt donor Information content (𝑅𝑖) of the closest canonical donor site.

∆𝑅𝑖 canonical donor Difference between 𝑅𝑖 of ref and alt alleles of the closest donor site (0 bits if the variant does
not affect the site).

∆𝑅𝑖 wt closest donor Difference between 𝑅𝑖 of the closest donor and the downstream (3’) donor site (0 bits if this is
the donor site of the last intron).

Donor offset Number of 1 bp-long steps required to pass through the exon/intron border of the closest donor site. The
number is negative if the variant is located upstream from the border.

max 𝑅𝑖 cryptic donor window Maximum 𝑅𝑖 of sliding window of all 9 bp sequences that contain the alt allele.

∆𝑅𝑖 cryptic donor Difference between max 𝑅𝑖 of sliding window of all 9 bp sequences that contain the alt allele and
𝑅𝑖 of alt allele of the closest donor site.

phyloP Mean phyloP score of the ref allele region.

19

https://doi.org/10.1016/j.ajhg.2021.06.014

Squirls Documentation, Release v2.0.0

5.1.2 Acceptor site-specific estimator

These are the features used by the acceptor random forest estimator:

∆𝑅𝑖 canonical acceptor Difference between information content (𝑅𝑖) of ref and alt alleles of the closest acceptor
site (0 if the variant does not affect the acceptor site).

∆𝑅𝑖 cryptic acceptor Difference between max 𝑅𝑖 of sliding window applied to alt allele neighboring sequence and
𝑅𝑖 of alt allele of the closest acceptor site.

Creates AG in AGEZ 1 if the variant creates a novel AG di-nucleotide in AGEZ , 0 otherwise.

Creates YAG in AGEZ 1 if the variant creates a novel YAG tri-nucleotide in AGEZ where Y stands for a pyrimidine
derivative (cytosine or thymine), 0 otherwise (see Wimmer et al., 2020).

Acceptor offset Number of 1 bp-long steps required to pass through the exon/intron border of the closest acceptor site.
The number is negative if the variant is located upstream from the border.

Exon length Number of nucleotides spanned by the exon where the variant is located in (-1 for non-coding variants
that do not affect the canonical donor/acceptor regions).

ESRSeq Estimate of impact of random hexamer sequences on splicing efficiency when inserted into five distinct
positions of two different minigene exons obtained by in vitro screening (Ke et al., 2011).

SMS Estimated splicing efficiency for 7-mer sequences obtained by saturating a model exon with single and double
base substitutions (saturation mutagenesis derived splicing score, Ke et al., 2018).

phyloP Mean phyloP score of the ref allele region.

Note: The values of all features based on information theory are in bits of information

5.2 Random forest estimators

Squirls algorithm consists of two random forest estimators trained to recognize variants that change splicing of a donor
or acceptor site. Given a set of splice features, the estimator calculates deleteriousness for the corresponding variant.

If a feature cannot be calculated for a variant, the missing feature value is imputed by a median feature value that was
observed during training of the model.

The random forest consists of 𝑛 decision trees that use the splice features to make a decision regarding deleteriousness
of the variant in question.

5.3 Logistic regression

Squirls uses logistic regression as the final step to integrate outputs of the donor and acceptor random forests into the
final Squirls score.

20 Chapter 5. Squirls anatomy

https://pubmed.ncbi.nlm.nih.gov/32126153
https://pubmed.ncbi.nlm.nih.gov/21659425
https://pubmed.ncbi.nlm.nih.gov/29242188

Squirls Documentation, Release v2.0.0

5.4 Glossary

AGEZ AG-exclusion zone, the sequence between the branch point and the proper 3’ss AG that is devoid of AGs, as
defined by Gooding et al., 2006

Information content Individual information content of a nucleotide sequence 𝑅𝑖(𝑗) that is related to thermodynamic
entropy and the free energy of binding. 𝑅𝑖 can also be used to compare sites with one another.

5.4. Glossary 21

https://pubmed.ncbi.nlm.nih.gov/16507133

Squirls Documentation, Release v2.0.0

22 Chapter 5. Squirls anatomy

CHAPTER

SIX

USE SQUIRLS AS A LIBRARY

Squirls is implemented as a modular Java application to allow to be used both as a standalone application and as a
library. This document explains how to use Squirls as a component/library, to predict deleteriousness of variants on
splicing within a larger application for analysis of genome variants.

The following sections describe how to use Squirls as a module in other Java tool.

6.1 Install Squirls modules into your local Maven repository

As the first step, Squirls needs to be installed into the local Maven repository. The installation requires JDK 11 or better
to be present in the environment. Squirls uses the amazing Maven Wrapper to build the project:

git clone https://github.com/TheJacksonLaboratory/Squirls
cd Squirls
./mvnw install

After the successful build, Squirls artifacts are installed in your local Maven repository and, therefore, available for
using as dependencies of other projects.

6.2 Bootstrap Squirls

Squirls can be easily used as a module within a larger Java application. To add Squirls into your codebase, first include
the squirls-bootstrap as a dependency, e.g. by adding the following into the pom.xml of your Maven project:

<dependency>
<groupId>org.monarchinitiative.squirls</groupId>
<artifactId>squirls-bootstrap</artifactId>
<version>${project.version}</version>

</dependency>

Note: Replace ${project.version} placeholder with an actual Squirls release, i.e. 2.0.0.

The programmatic initialization of Squirls is very straightforward:

Path dataDirectory = ... ; // path to Squirls data directory
SquirlsProperties squirlsProperties = SimpleSquirlsProperties.builder().build();

(continues on next page)

23

https://github.com/takari/maven-wrapper

Squirls Documentation, Release v2.0.0

(continued from previous page)

SquirlsOptions squirlsOptions = SquirlsOptions.of(FeatureSource.REFSEQ); // ENSEMBL and␣
→˓UCSC are available too
SquirlsConfigurationFactory squirlsFactory = SquirlsConfigurationFactory.
→˓of(dataDirectory, squirlsProperties, squirlsOptions);

Squirls provides high-level API for access to the reference genome, to calculate the splice features, and the Squirls
score for given variant.

This is a minimal example for annotating the variant NM_000251.2:c.1915C>T (chr2:47702319C>T), predicted to
create a novel cryptic donor site in MSH2:

VariantSplicingEvaluator variantEvaluator = squirls.variantSplicingEvaluator();
GenomicAssembly assembly = squirls.squirlsDataService().genomicAssembly();
VcfConverter vcfConverter = new VcfConverter(assembly, VariantTrimmer.
→˓rightShiftingTrimmer(VariantTrimmer.retainingCommonBase()));

// chr2 47702319 MSH2_cryptic_donor C T 1000 . ␣
→˓AC=2;AF=1 GT 1/1
Variant variant = vcfConverter.convert(assembly.contigByName("chr2"), "MSH2_cryptic_donor
→˓", 47_702_319, "C", "T");
SquirlsResult squirlsResult = variantEvaluator.evaluate(variant);

assertThat(squirlsResult.isPathogenic(), is(true));
assertThat(squirlsResult.maxPathogenicity(), is(closeTo(0.698, 1E-5)));

Use SquirlsResult for the downstream variant analysis.

6.3 Spring Boot application

Squirls includes a squirls-spring-boot-starter module for including Squirls into an application that uses Spring
boot framework. Using the starter requires even less lines of code than using squirls-bootstrap.

Warning: The Spring Boot module is deprecated and will be removed in v3.0.0. Use the squirls-bootstrap
module instead.

To use Squirls in a Spring boot app, add the following dependency into your pom.xml:

<dependency>
<groupId>org.monarchinitiative.squirls</groupId>
<artifactId>squirls-spring-boot-starter</artifactId>
<version>${project.version}</version>

</dependency>

After adding the dependency, Spring configures Squirls beans, as long as you define the following \@Bean in your
@Configuration class:

@Bean
public Path squirlsDataDirectory() {
return Paths.get("path/to/squirls/data");

}

24 Chapter 6. Use Squirls as a library

Squirls Documentation, Release v2.0.0

squirls-spring-boot-starter provides several high-level @Beans:

• SquirlsDataService to get transcripts that overlap with given coordinates, to fetch reference genome se-
quence, etc.

• SplicingAnnotator to calculate splice features for a variant

• SquirlsClassifier to calculate Squirls score given splice features, and

• VariantSplicingEvaluator to perform everything described above within a single method call.

squirls-cli shows an example how to use squirls-spring-boot-starter.

6.3. Spring Boot application 25

Squirls Documentation, Release v2.0.0

26 Chapter 6. Use Squirls as a library

INDEX

A
AGEZ, 21

I
Information content, 21

27

	Set up Squirls
	Squirls downloadable resources
	Prebuilt Squirls executable
	Squirls database files

	Build Squirls from source

	Run Squirls
	annotate-pos - Annotate variant positions
	annotate-csv - Annotate variant positions stored in a CSV file
	Mandatory arguments
	Optional arguments

	annotate-vcf - Annotate variants in a VCF file
	Mandatory arguments
	Optional arguments

	precalculate - Precalculate SQUIRLS scores
	Mandatory arguments
	Optional arguments
	Parallel processing
	Variant generation

	Output formats
	HTML output format
	VCF output format
	CSV/TSV output format

	Result interpretation
	Variant categories
	Canonical donor
	Cryptic donor
	Canonical acceptor
	Cryptic acceptor

	Figure types
	Sequence ruler
	Sequence logo
	Sequence walker
	Sequence trekker
	Ri score distribution

	Squirls anatomy
	Splice features
	Donor site-specific estimator
	Acceptor site-specific estimator

	Random forest estimators
	Logistic regression
	Glossary

	Use Squirls as a library
	Install Squirls modules into your local Maven repository
	Bootstrap Squirls
	Spring Boot application

	Index

